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Ultrasonic attenuation in a-quartz as a result of E' defect centres 
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Abstract 

The ultrasonic attenuation (acoustic losses) in a-quartz as a result of relaxation processes at E' series defect 
centres is calculated. For this purpose use is made of the theoretical temperature dependences of the E' relaxation 
time, reported elsewhere, based on the pseudo-Jahn-Teller effect and the reaction rate method. A comparison 
is made of the temperature curve of the acoustic losses at 5 MHz with a literature experimental loss curve of 
an AT-cut quartz resonator measured following irradiation with neutrons. 

1. Introduction E i 

It is well known that point defects such as acoustic 
loss (AL)-associated and H-related defect centres lead 
to ultrasonic attenuation (acoustic losses) in natural 
and synthetic quartz [1, 2]. Oxygen vacancies (E'  defect 
centres) are also an important class of defects in quartz. 
Stable E'  defects are known to form upon irradiation 
with high energy particles in knock-on collisions [1]. 
From a fundamental point of view these structural 
defects should also bring about acoustic losses. The 
aim of this paper is to calculate the acoustic losses 
due to the relaxation behaviour of these defect centres. 

2. E' defect centres modelling 

Figure 1 shows structural models for defects of the 
E'  series as well as the ideal lattice of a-quartz for 
comparison. An E'  centre obtaining as an O atom 
bridging two SiO3 tetrahedra is removed and substituted 
for by one non-bonding electron. Otherwise the resulting 
oxygen vacancy is "atom empty" in E~ but hosts an 
off-centre H -  ion in E~ and E~. 

It is characteristic of the E'  series that the extra 
electron is t rapped in a dangling orbital at one of the 
Si atoms, which is balanced by a gross asymmetric 
relaxation of both Si atoms. For  instance, in E~ the Si 
atom with the trapped electron (the short (S)-bond 
partner) displaces slightly towards the vacancy, while 
the other Si atom (the long (L)-bond partner) relaxes 
in the plane of its O atoms, to which it remains bonded. 
The extra-electron sp 3 orbital extends towards the va- 
cancy. In E~ the sp 3 orbital, also spreading towards the 
vacancy, is at the L-bond Si, but now the configurational 
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Fig. t. Structural models for E' series defect centres in a-quartz. 
Note the slight inequivalence of the bond lengths, short (S) and 
long (L), in the ideal lattice. 

distortions within the two neighbouring pyramids are 
less significant. F_~ forms from E~ as the extra-electron 
orbital flips in the opposite direction away from the 
hydrogen-occupied vacancy. Now the orbital flip-flop 
brings about a larger structural transfigurement in which 
the vertex of the L-bond SiO3 tetrahedron flips away 
from the impurity along with the electron orbital. There  
also is an accompanying asymmetric relaxation of the 
H -  ion in E~ which brings it into an off-centre position 
( H -  ion relaxation is not shown in Fig. 1). 
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Gross asymmetric relaxations such as those in Fig. 
1, as well as the associated structural defect models, 
can be predicted by way of quantum chemical cluster 
calculations .and electron paramagnetic (EPR) data 
[3-5]. An alternative approach to the problem is based 
on the pseudo-Jahn-Teller effect [6, 7]. Two pairs of 
equilibrium conformations believed to correspond to 
(E~, El) and (F_~, E~) defect types are shown in Fig. 
1. From a fundamental point of view, switch-over tran- 
sitions are conceivable between any two conformations 
within each pair. From a practical point of view, switch- 
overs of this type will definitely contribute to the 
dielectric or acoustic losses in the material. 

3. Calculation 

A basic quantity to be precalculated by the theory 
in order to forecast losses due to E' centres is the 
switch-over relaxation time. We had earlier computed 
intrapair relaxation times for E' defect centres in a- 
quartz by applying the reaction rate method [6, 8, 9] 
to the structural models depicted in Fig. 1. Our cal- 
culations had shown that E' centres in a-quartz relaxed 
through thermally activated tunnelling within the tem- 
perature range where defect centre manifestation is 
observed [1]. This transition type involves both quantum 
mechanical tunnelling and classical jumps near the 
barrier top. Relaxation times of the incorporated hy- 
drogen in E~ have also been computed [7]. 

Physically, the relaxational absorption of ultrasound 
in solids is based on the coupling of the relaxation 
process at defects in the crystalline lattice to the elastic 
strain by way of the deformation potential. In the cases 
under consideration this is the coupling of configu- 
rational displacements of atoms at the defect sites to 
the elastic strain induced by the propagating acoustic 
wave. Energetically, the two configurations correspond- 
ing to the two wells in the vibronic potential energy 
are somewhat asymmetric. With the acoustic wave fre- 
quency low relative to the frequency of thermal phonons, 
the wave does not interact with the phonons directly 
but rather modulates the well asymmetry. This mod- 
ulation disturbs the thermal equilibrium of the wells 
and the phonon ensemble, which is re-established by 
configurational flux from one well to the other until 
new thermal occupations settle down. This enhances 
the entropy of the phonon ensemble, leading to the 
loss of energy of the acoustic wave. In a sense the 
wave serves as a feedback to the relaxation process 
and, when in phase or out of phase with it, leads to 
dispersion of velocity or to absorption of energy re- 
spectively. Correspondingly, the energy losses depend 
on the relaxation time ~- according to [10] 

n /3  2 t o t  
Q - a =  (1) 4pV2kb T 1 + to2~2 

where to is the acoustic wave circular frequency, /3 is 
the deformation potential introduced by E '  =E+/3r/, 
which shows how an external elastic strain 71 alters the 
energy inequivalence between the two wells, p is the 
mass density of quartz, v is the acoustic wave velocity 
and n is the concentration of defect centres. 

The relaxation time ~-is assumed to depend Arrhenius- 
wise on the temperature: $= ~'o exp(Eb/kb T), where Eb 
is the activation energy of the defect. In the present 
case Eb is the barrier height between the two wells (in 
electronvolts), while ~'o is an effective "attempt fie- 
quency"; ~" is the sum only of the relaxation times for 
sub- and over-barrier transitions, because the time for 
quantum mechanical tunnelling is negligibly small. 

Four relaxation times (in seconds) are included cor- 
responding to the E~-E~ interconversions back and 
forth as follows [6, 8]: 

~'(E'~-E'I)c~ = 2.34 × 10-14 [ 0.66'~ exp  ) 

,r(,,,_z,~)o = 2.34 × 10_,4 /0.73'~ expl  ) 

7"(E,,-w2) -- 7.34 X 10-14 [ 0.56~ expi  ) 

Z(E,~E,,) = 7.34 × 10_14 /0.64~ exP~k---~) 

The relaxation time (in seconds) for the H -  ion only 
in one direction is taken into account: 

~'/~- = 9.95 × 10-14 /0.062~ exp~ k - ~ )  

The relaxation time for the reverse transition is a 
constant equal to 9.95 × 10  -14  S within the temperature 
range [7], which is why this relaxation time is neglected 
in the calculations. 

For calculating Q- l ,  we chose an AT-cut quartz 
resonator with shear waves in thickness along the X 
axis and v = 3300 m s-1 at 5 MHz. A value for /3 of 
1 eV for SiO2 is taken from ref. 11. The defect con- 
centrations of all the relaxation components (with the 
exception of the H-1 ion) are assumed to be the same 
and set equal to 4X1023 m -3, at which value the 
resulting total loss matched the experimental mea- 
surement at 480 K as shown in Fig. 2 [2]. The con- 
centration of H -1 ions is chosen to be 2.5×1022 m -3 
in accordance with ref. 12. 

With the above-mentioned values of the various 
quantities we computed the temperature dependence 
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Fig. 2. Calculated temperature  dependence of acoustic losses 
Q -  1 of an AT-cut quartz resonator due to E '  series defect centres 
and the H -  ion at the E~ defect centre. The curve with circles 
shows experimental losses of an AT-cut resonator measured at 
5 MHz following irradiation with 1.2× 10 TM neutrons cm -2 [2]. 

of Q-~ presented in Fig. 2. In these calculations the 
contributions of each relaxation time component were 
computed using eqn. (1) and then summed to give the 
total loss at each particular temperature. 

4. Comments  

Q-1 in the temperature-independent transition is 104 
times lower. This fact explains the reason why the 
above-mentioned process is not taken into account in 
the calculations. The strong difference between the two 
peaks shows that the relaxation of the H -1 ion ac- 
companying the relaxation of the E; defect centre is 
very small and has little influence on the E; defect 
centre relaxation behaviour. 

5. Conclusions 

We have calculated the acoustic losses (ultrasonic 
attenuation) in an AT-cut quartz resonator as a function 
of the temperature by taking into account the relaxation 
processes due to E' series defect centres in a-quartz. 
The relaxation processes involve El-El and E~-E~ in- 
terconversions and the relaxation of the H-  ion at the 
E~ defect centre. The relaxation times used in the 
calculations are those computed earlier based on the 
pseudo-Jahn-Teller defect and the reaction rate 
method. The obtained loss curves follow the general 
trends predicted by the relaxation theory and agree 
fairly with experimental loss data from the literature. 
These agreements show the feasibility of our calcu- 
lations, which may be expected to improve further as 
information on the underlying oxygen vacancy centres 
becomes available. The present calculations may be 
useful in forecasting the response of quartz resonators 
to irradiation with high energy particles. 

The temperature dependence Q-I(T) at 5 MHz 
displays two peaks. One of them is at 501 K and 
corresponds to E~, E; and E; defect centre switch-over 
transitions. The second peak at 56 K is related to the 
relaxation of the H-1 ion at the E; defect centre. Both 
peaks show a form in agreement with the relaxation 
theory. The value of Q-1 is proportional to the defect 
concentration and amounts to about 2.1×10 -5 at 
n = 4 × 1023 m- 3 at 501 K and 3.5 X 10-6 at n = 2.5 X 1022 
m -3 at 56 K. For comparison, an experimental Q-~ 
(T) dependence for a synthetic quartz crystal measured 
at 5 MHz following neutron irradiation is shown as 
the curve with circles. The agreement may lge considered 
to be satisfactory in view of the possible contribution 
of defects other than the E' species to the experimental 
loss curve. 

The calculated acoustic losses due to the relaxation 
of the H-  ~ ion are evidence of a typical single-relaxation 
process at low temperature, connected with the small 
value of its activation energy. The calculated value for 
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